The Carbon-13 and Phosphorus-31 Nuclear Magnetic Resonance Spectra of Some Tertiary Phosphines

By B. E. Mann, The School of Chemistry, The University, Leeds LS2 9JT

The ³¹P and ¹³C n.m.r. spectra for some tertiary phosphines are reported. Factors affecting the chemical shifts and coupling constants are examined, and it is suggested that the major factor involved in determining changes in chemical shifts from one tertiary phosphine to another is the bond angle at the nucleus concerned.

THE growing use of ¹³C n.m.r. spectroscopy has been reviewed.¹ However, organophosphorus compounds have been neglected, although ¹³C chemical shifts and ³¹P-¹³C coupling constants have been obtained. Retcofsky and Griffin have published the ${\rm ^{13}C}$ chemical shift of the para-carbon atom for ten phenylphosphorus compounds.² McFarlane has used ¹H-{¹³C} INDOR

¹ E. F. Mooney and P. H. Winson, Ann. Rev. N.M.R. Spectroscopy, 1969, 2, 153. ² H. L. Retcofsky and C. E. Griffin, Tetrahedron Letters, 1966,

1975.

to measure the ¹³C n.m.r. spectra of some phosphorus compounds containing methyl or ethyl groups.³ The ¹³C n.m.r. spectra of PPh₃, P(OPh)₃, and OP(OPh)₃ have been reported.4,5 Thus although different types of phosphorus compound have been examined, there has been no study of the ¹³C n.m.r. spectra of any one series of organophosphorus compounds. One of the simplest

- ³ W. McFarlane, Proc. Roy. Soc., 1968, A, **306**, 185. ⁴ O. A. Gansow and B. Y. Kimura, Chem. Comm., 1970, 1621.
- ⁵ G. C. Levy and J. D. Cargioli, Chem. Comm., 1970, 1663.

series of organophosphorus compounds is that of tertiary alkyl- and aryl-phosphines.

EXPERIMENTAL

The ¹³C and ³¹P n.m.r. spectra were measured on a Bruker HFX-90 n.m.r. spectrometer with all proton coupling removed by white noise decoupling at ca. 35 °C. The ³¹P n.m.r. spectra were measured on ca. 10% solutions of the phosphine in benzene containing ca. 10% perfluorobenzene phosphine containing ca. 10% perfluorobenzene to provide a ¹⁹F field-frequency lock and approximately 5% tetramethylsilane as internal ¹³C calibrant.

All manipulations involving tertiary phosphines were carried out under nitrogen.

RESULTS

Chemical shifts for the tertiary phosphines are in Table 1, and coupling constants in Table 2. The numbering of

TABLE 1 ¹³C and ³¹P N.m.r. chemical shifts for some tertiary phosphines. Atoms are numbered as in (I). The ¹³C chemical shifts

Cana I IV.m.	.i. enemiea	1 5111105 101	some cer	ciary pin	opmico.	11001110 0	ac numbe		(1). 110	e enem	iour onnice
$(\pm 0.1 \text{ p.p.m.})$ a	re relative	to tetram	ethylsilar	ne and th	e ³¹ P cher	nical shift	ts (±0·2 1	p.m.) are	e relative	to 85% I	I ₃ PO ₄ *
Tertiary	- (-)	G (a)	G (0)	A (b)	0.17	0.00		G (0)	G (A)	0(10)	D (11)
phosphine	C(1)	C(2)	C(3)	C(4)	C(5)	C(6)	C(7)	C(8)	C(9)	C(10)	$P(\Pi)$
PMe_3	—14·3 ª										62 ^b
PEt_3	-19.5	-10.3									ء 20٠1 و
PBu_{3}^{n}	-29.3	-28.6	$-25 \cdot 4$	-14.7							32.7 °
$PMe_{2}Ph$	-14.7				-143.5	-130.7	-128.5	-128.0			47·6°
PEt₀Ph	-20.9	-10.0			-139.8	-132.7	-128.6	-128.7			17.6℃
PPr ⁿ ₄Ph	-31.7	-20.1	-16.1		-140.4	$-132 \cdot 8$	-128.6	-128.7			27·3 °
PBun,Ph	-29.0	-29.0	-25.0	-14.0	-140.6	$-132 \cdot 8$	-128.6	-128.7			ء 26€
$PMePh_{2}$	-12.7				-141.5	-132.6	-128.8	-128.7			ء 27.7
PEtPh,	-21.5	-10.4			-140.2	-133.3	-128.9	$-128 \cdot 8$			ء 12.3
$PMe_{a}Bu^{t}$	-9.5								-26.5	-26.5	ء 28.7
$PEt_{2}Bu^{t}$	-17.7	-12.3							-28.1	-27.8	-6·9°
$PPr^{n}_{2}Bu^{t}$	-28.8	$-22 \cdot 1$	-16.3						-27.8	-27.8	8.7 •
PBu^{n} , Bu^{t}	-25.5 .	-31.5	-25.4 .	-14.1					-27.9	-27.8	4·4 °
$PMe\tilde{B}u^{t}$,	-3.5								-30.7	-29.4	-12.0
PEtBu^{t}	-14.3	$-15 \cdot 1$							-31.4	-30.0	-32.4
PPr ⁿ Bu ^t ,	-24.4	$-24 \cdot 3 \cdot$	-16.1						-31.4	-30.0	-26·3 °
PBut									- 34.7	- 32.8	-63.3

 PPh_3

^a From ref. 3. ^b From ref. 10. ^c From ref. 11. ^d From ref. 6. ^e Probable assignment, see text. From ref. 4.

 $-138 \cdot 3^{f}$ $-134 \cdot 4$ $-129 \cdot 2^{f}$ $-129 \cdot 3^{f}$

* The sign of the shifts is in the sense that increasing field is taken as positive.

TABLE 2

 $^{13}C^{-31}P$ Coupling constants (Hz) for some tertiary phosphines. The carbon atoms are numbered as in (I). All coupling constants are accurate to ± 0.2 Hz

Tertiary								
phosphine	$^{1}J(C^{1}-P)$	$^{2}J(C^{2}-P)$	$J(C^3-P)$	$^{1}J(C^{5}-P)$	$^{2}J(C^{6}-P)$	$^{3}J(C^{7}-P)$	$^{1}J(C^{9}-P)$	${}^{2}J(C^{10}-P)$
PMe, a	-13.6							
PEt	14.0	13.8						
PBu ⁿ ,	13.8	14.8	11.1					
PMe,Ph	14.6			15.6	17.5	5.8		
PEt,Ph	12.5	14.7		17.9	18.6	6.7		
PPr ⁿ ₀Ph	12.8	15.4	$12 \cdot 2$	17.6	20.4	6.7		
PBu ⁿ ₂ Ph	ء 12.7	15.2 °	11.5	17.7	19.2	6.7		
PMePh ₂	15.4			14.1	18.8	6.4		
PEtPh,	17.1	11.6		14.9	18.9	6.5		
PMe, But	19.8						10.7	13.4
PEt ₂ Bu ^t	18.2	21.0					13.0	13.4
PPr ⁿ ₂ Bu ^t	19·1	20.8	12.7				12.4	13.6
PBu ⁿ ₂ Bu ^t	19·4 °	18.8	12∙3 €				12.9	$13 \cdot 4$
PMeBu ^t ₂	$25 \cdot 2$						21.8	14.1
PEtBut ₂	22.0	28.3					$23 \cdot 2$	13.8
PPr ⁿ Bu ^t ₂	21.8 °	27.9 °	13.4				23.5	14.2
PBu ^t 3							33.9	13.3
PPh3				21	20	7		

" From ref. 3. " From ref. 4. " Probable assignment, see text.

to provide a ¹⁹F field-frequency lock. Calibration was by measurement of the ³¹P n.m.r. spectrum of P(OMe)₃ under the same conditions. The ³¹P chemical shifts are quoted with respect to 85% H₃PO₄ by taking the chemical shift of $P(OMe)_3$ with respect to 85% H_3PO_4 as -141.0 p.p.m.⁶ The ¹³C n.m.r. spectra were measured on the neat tertiary

the carbon and phosphorus atoms is as in (I). Literature values for PMe₃ and PPh₃ are added.^{3,4} The assignment of peaks to a given carbon atom was not always straightforward, since the majority of carbons had their ¹³C resonance split into a doublet by coupling with ³¹P (see Figure 1). Assignment was assisted by (a) use of off-resonance decoupling.⁷ This technique gives the number of hydrogen

⁶ 'Topics in Phosphorus Chemistry,' vol. 5, ³¹P Nuclear Magnetic Resonance, ed. M. Grayson and E. J. Griffith, Interscience, New York, 1967, and references therein.

7 R. A. Archer, R. D. G. Cooper, P. V. Demarco, and L. R. F. Johnson, Chem. Comm., 1970, 1291.

6.0 ª

atoms attached to a particular carbon atom. It proved especially useful for PEtBut_2 where the doublets due to the carbon of the ethyl group overlapped. (b) Use of intensities.

Intensities were used with caution on account of enhancements due to the nuclear Overhauser effect. However, the effect appeared to be approximately equal for the o-, m-, and p-carbons of the phenyl ring. (c) Use of measurements on other compounds. For a monosubstituted phenyl ring, the *m*-carbon ¹³C chemical shift is least moved from the position of benzene.⁸ The o- and *m*-carbons were assigned on this basis. The assignment of the CH₂ carbons of alkyl chains were based on the chemical shifts reported for alkanes ⁹ and the magnitude of phosphorus-carbon coupling constants in other tertiary phosphines.

On account of the overlap of doublets, assignment is not conclusive in three cases. For example Figure 1 shows part of the ¹³C n.m.r. spectrum of $PBu_2^nBu^t$. From the observed chemical shifts of alkanes and other tertiary phosphines, the four peaks can be assigned to the doublets of C(1) and C(3). It would be expected that ${}^{1}J(P-C^{1})$ and ${}^{3}J(P-C^{3})$ will be approximately the same as those measured for $PPr_{2}Bu^{t}$ where ${}^{1}J(P-C^{1}) = 19 \cdot 1$ Hz and ${}^{3}J(P-C^{3}) =$ $12 \cdot 7$ Hz. Of the possible assignments only two have

FIGURE 1 Part of the 22.62 MHz ¹³C n.m.r. spectrum of PBuⁿ₂Bu^t, with all the proton coupling removed

coupling constants close to those of $PPr_2^nBu^t$, namely ${}^1J(P-C^1)$ 19.4 Hz and ${}^3J(P-C^3)$ 12.3 Hz or ${}^1J(P-C^1)$ 17.9 Hz

⁸ G. E. Maciel and J. J. Natterstad, J. Chem. Phys., 1965, 42, 2427.
⁹ D. M. Grant and E. G. Paul, J. Amer. Chem. Soc., 1964, 86, 2984.

and ${}^{3}J(P-C^{3})$ 13.8 Hz. The first pair appear the most likely, and these values are given in Table 2 with the corresponding chemical shifts in Table 1, but the second assignment cannot be completely ruled out. Similar problems exist for PBuⁿ₂Ph and PPrⁿBu^t₂.

DISCUSSION

The ³¹P Chemical Shifts.—Most of the ³¹P chemical shifts have been reported previously,^{10,11} but are reported for the first time for PMeBut₂, PEtBut₂, and PBut₃. It is however pertinent to discuss the ³¹P as well as the ¹³C chemical shifts. Factors that affect ³¹P chemical shifts of phosphines appear to be very closely related to those that affect the ¹³C chemical shifts of alkanes.⁹ For example if the ¹³C chemical shift ⁹ of RCH₃ (R = alkyl or phenyl) is plotted against the ³¹P chemical shift ¹⁰ of RPPh₂, R₂PPh, or R₃P a

FIGURE 2 A plot of the ¹³C chemical shift of R¹³CH₃ against the ³¹P chemical shift of R³¹PPh₂

steady curve is produced, (e.g. Figure 2). Factors affecting ³¹P chemical shifts have been examined previously.⁶ It was concluded that three factors were involved: (a) the electronegativity of the substituent(s), (b) the bond angle(s) at the phosphorus, and (c) π -bonding between the substituent and the phosphorus. The order of substituent effect Me < Buⁱ < Prⁿ < Buⁿ < $Et < Ph < Pr^i < Bu^t$ does not seem to have been satisfactorily explained. A similar order is found for both tertiary phosphines and alkanes (Figure 2). It is significant that the phenyl group lies on the same line as the alkyl groups. This does not happen if $R_3^{11}B$ is plotted against R¹³CH₃ or R¹⁷OH against R¹³CH₃. There are significant deviations when R = Ph, but boron-phenyl and oxygen-phenyl π -bonding would be expected.¹² Thus phenyl-phosphorus π -bonding seems to be unlikely in tertiary phosphines. Confirmation of this conclusion comes from the ¹³C chemical shifts

¹⁰ S. O. Grim, W. McFarlane, and E. F. Davidoff, J. Org. Chem., 1967, 32, 781, and references therein. ¹¹ B. E. Mann, C. Masters, and B. L. Shaw, J. Chem. Soc.

¹¹ B. E. Mann, C. Masters, and B. L. Shaw, J. Chem. Soc.
 (A), 1971,1104.
 ¹² 'Organic Chemistry,' L. F. Fieser and M. Fieser, Reinhold,

¹² 'Organic Chemistry,' L. F. Fieser and M. Fieser, Reinhold, New York, 3rd edn., 1956, p. 568. of the m- and p-carbons of the phenyl ring. Maciel and Natterstad have shown that the p-carbon π -electron density is linearly related to the difference in ¹³C chemical shift between the *m*- and p-carbons.⁸ In the case of the phenylphosphines reported here, this difference is always less than 0.5 p.p.m. compared with the much larger differences found, e.g., for PhNMe₂ (12.5 p.p.m.),¹³ where π -bonding is generally accepted. It is therefore concluded that there is almost certainly negligible phosphorus-carbon π -bonding in our tertiary phosphines.

The relative importance of bond angles and electronegativity on ³¹P chemical shifts of tertiary phosphines is more difficult to assess. However, there are measurements on related compounds that indicate that bondangle changes are dominant: (a) in the case of the PR_{4}^{+} cation, where the C-P-C bond angle is fixed, the change in ³¹P chemical shift ⁶ on going from PMe_4^+ (-25.1 p.p.m.) to PEt_4^+ (-33 p.p.m.) is small compared with the change on going from PMe₃ (+62 p.p.m.) to PEt₃ (+20.1 p.p.m.); (b) the 'theoretical 'electronegativities of Me and But are very similar (2.27 and 2.29 respectively¹⁴) yet there is a considerable chemical-shift difference between PMe₃ (+62 p.p.m.) and PBut₃ $(-63\cdot3 \text{ p.p.m.});$ (c) ¹³C n.m.r. spectra are known to be relatively insensitive to the electronegativity of the β -substituent. On the basis of the linear plot between the ^{13}C chemical shift and the $\beta\text{-substituent}\,^{15}$ it would be expected that no more than 1 p.p.m. of the 42 p.p.m. change on going from PMe₃ to PEt₃ can be attributed to electronegativity changes; and (d) if the computer programme to calculate ³¹P chemical shifts due to Van Wazer and Letcher is used,¹⁶ then to account for the change in ³¹P chemical shift on going from PMe₃ to PBu^t₃. without making any allowance for changes in electronegativity, the C-P-C bond angle has to increase from the known value ¹⁷ for PMe₃ of 98.6° to 105.7° in PBut₃. This is not unreasonable.

We conclude that the ³¹P chemical shifts of tertiary alkyl- or aryl-phosphines are dominated by bondangle changes. As a corollary from the relationship shown in Figure 2, the ¹³C chemical shifts of alkanes (excluding cases where electronegativity of substituents is possibly changed, e.g., changing H to Me on going from CH_4 to C_2H_6) are also dominated by bond-angle changes.

¹³C Chemical Shifts.—The ¹³C chemical shifts in the tertiary phosphines appear to behave in a similar way to the alkanes.⁹ The changes in C(1), C(2), C(3), and C(4) chemical shifts for a series such as PR_2Ph (R = Me, Et, Prⁿ, and Buⁿ) are analogous to those observed for alkanes. It seems likely from the earlier discussion on ³¹P chemical shifts that ¹³C chemical shifts of alkanes are also dominated by changes in bond angle. However,

17 L. S. Bartell and L. O. Brockway, J. Chem. Phys., 1960, 32, 512.

too few data are available to justify a detailed discussion.

The influence of phosphorus on ¹³C chemical shifts appears to be small. For example the ¹³C chemical shift of PMe_3 of -14.3 p.p.m. is very similar to that observed 9 for $HC(^{13}CH_3)_3$ of -13.65 p.p.m., yet very different from NMe_3 of -46.8. These differences are probably predominantly due to electronegativities,¹⁴ e.g., $-PMe_2$; -2.28, $-CHMe_2$: -2.28; and $-NMe_2$: -2.40.

13C-31P Coupling Constants.—The magnitude of $^{1}I(^{13}C^{-31}P)$, $^{2}I(^{13}C^{-31}P)$, and $^{3}I(^{13}C^{-31}P)$ for the alkyl side-chains are all approximately equal, and are therefore of little assistance for assignments. ${}^{1}J({}^{15}N{}^{-13}C)$ has been interpreted on the basis of the Fermi contact term.¹⁸ It is therefore possible that ${}^{1}J({}^{13}C-{}^{31}P)$ can be interpreted similarly. The presence of negative

FIGURE 3 A plot of ${}^{1}J({}^{13}C-{}^{31}P)/s$ -character of the carbon bonding orbital, sc, against the s-character of the phosphorus bonding orbital, s_p , for PMe₃, PPh₃, and PMe₄+

values of ${}^{1}I({}^{13}C-{}^{31}P)$, although forbidden by the simple Fermi contact treatment, has recently been explained.¹⁹ The s-character, s_c, in the hybrid carbon orbital can be estimated on the normal basis, *i.e.*, sp^3 carbon $s_c = 0.25$; and sp^2 carbon $s_c = 0.33$. The s-character, $s_{\rm p}$, in the hybrid phosphorus orbital can be estimated for PMe₃ and PPh₃ from the known C-P-C bond angles, θ , from relationship (1). The C-P-C bond angles

$$s_{\rm p} = \frac{\cos\theta}{\cos\theta - 1} \tag{1}$$

and ${}^1J({}^{13}C-{}^{31}P)$ are known for PMe_3 , ${}^{17}PPh_3 {}^{20}$ $[{}^1J({}^{13}C-{}^{31}P)$ assumed positive], and PMe_4^+ . For these three compounds, a plot of ${}^{1}J({}^{13}C-{}^{31}P)/s_{c}$ against s_{p} is straight (Figure 3). If we assume a positive value of $^{1}/(^{13}C^{-31}P)$ for PBu^t₃, this requires a C-P-C bond angle of 105.7° , in good agreement with 105.7° calculated

¹³ C. P. Nash and G. E. Maciel, J. Phys. Chem., 1964, 68, 832.

 ¹⁴ J. E. Huheey, J. Phys. Chem., 1965, 69, 3284.
 ¹⁵ H. Spiesecke and W. G. Schneider, J. Chem. Phys., 1961, 35. 722. ¹⁶ Ref. 6, p. 217.

¹⁸ G. Binsch, J. B. Lambert, B. W. Roberts, and J. D. Roberts, J. Amer. Chem. Soc., 1964, 86, 5564. ¹⁹ C. J. Jameson and H. S. Gutowsky, J. Chem. Phys., 1969,

⁵¹, 2790.

²⁰ J. J. Dally, J. Chem. Soc., 1964, 3799.

from ³¹P chemical shifts. In view of the approximations this agreement is probably fortuitous, but indicates that the dominant factor with tertiary phosphine chemical shifts and coupling constants is the C-P-C bond angle.

Conclusions.—The major factor affecting ³¹P and probably ¹³C chemical shifts appears to the bond-angle changes at the nucleus in question. This only applies when there is a negligible change in the electronegativity of the substituent, e.g., when methyl is changed to t-butyl, but not when hydrogen is changed to methyl.

I thank Professor B. L. Shaw for the gift of the tertiary phosphines, and for encouragement.

[1/689 Received, May 4th, 1971]